On the tensor spectral p-norm and its dual norm via partitions
نویسندگان
چکیده
منابع مشابه
On Tensor Completion via Nuclear Norm Minimization
Many problems can be formulated as recovering a low-rank tensor. Although an increasingly common task, tensor recovery remains a challenging problem because of the delicacy associated with the decomposition of higher order tensors. To overcome these difficulties, existing approaches often proceed by unfolding tensors into matrices and then apply techniques for matrix completion. We show here th...
متن کاملTensor sparsification via a bound on the spectral norm of random tensors
Given an order-d tensor A ∈ Rn×n×...×n, we present a simple, element-wise sparsification algorithm that zeroes out all sufficiently small elements of A, keeps all sufficiently large elements of A, and retains some of the remaining elements with probabilities proportional to the square of their magnitudes. We analyze the approximation accuracy of the proposed algorithm using a powerful inequalit...
متن کاملTrace Norm Regularized Tensor Classification and Its Online Learning Approaches
In this paper we propose an algorithm to classify tensor data. Our methodology is built on recent studies about matrix classification with the trace norm constrained weight matrix and the tensor trace norm. Similar to matrix classification, the tensor classification is formulated as a convex optimization problem which can be solved by using the off-the-shelf accelerated proximal gradient (APG) ...
متن کاملCombinatorial methods for the spectral p-norm of hypermatrices
The spectral p-norm of r-matrices generalizes the spectral 2-norm of 2-matrices. In 1911 Schur gave an upper bound on the spectral 2-norm of 2-matrices, which was extended in 1934 by Hardy, Littlewood, and Polya to r-matrices. Recently, Kolotilina, and independently the author, strengthened Schur’s bound for 2-matrices. The main result of this paper extends the latter result to r-matrices, ther...
متن کاملOn p-norm linear discrimination
We consider a p-norm linear discrimination model that generalizes the model of Bennett and Mangasarian (1992) and reduces to a linear programming problem with p-order cone constraints. The proposed approach for handling linear programming problems with p-order cone constraints is based on reformulation of p-order cone optimization problems as second order cone programming (SOCP) problems when p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Optimization and Applications
سال: 2020
ISSN: 0926-6003,1573-2894
DOI: 10.1007/s10589-020-00177-z